1110 Technical Notes

REFERENCES

 D. Kirkham and W. L. Powers, Advanced Soil Physics. Wiley-Interscience, New York (1972). J. Crank, The Mathematics of Diffusion. Clarendon Press, Oxford (1975).

 Soil Water (edited by D. R. Nielsen). American Society of Agronomy, Soil Science Society of America, Madison (1972).

Int. J. Heat Mass Transfer. Vol. 27, No. 7, pp. 1110-1113, 1984 Printed in Great Britain 0017-9310/84 \$3.00 + 0.00 © 1984 Pergamon Press Ltd.

THE EFFECT OF WALL SUCTION AND THERMOPHORESIS ON AEROSOL PARTICLE DEPOSITION FROM A LAMINAR BOUNDARY LAYER ON A FLAT PLATE

A. F. MILLS, Xu HANG and F. AYAZI University of California, Los Angeles, CA 90024, U.S.A.

(Received 1 August 1983 and in revised form 25 September 1983)

NOMENCLATURE

 $C_{\rm m}$, $C_{\rm s}$, $C_{\rm t}$, $C_{\rm 1}$, $C_{\rm 2}$, $C_{\rm 3}$ constants in equation (2)

d diameter

D diffusion coefficient

f dimensionless stream function, $\psi/(2u_e vx)^{1/2}$

g dimensionless temperature, $(T - T_e)/(T_s - T_e)$

convective heat transfer coefficient

J particle flux

k thermal conductivity

Kn Knudsen number

N particle concentration

Pr Prandtl number

Re Reynolds number, $u_e x/v$

Sc Schmidt number

St Stanton number

T temperature

 u, v streamwise and normal velocity components, respectively

V_T thermophoretic velocity

x, y streamwise and normal coordinates, respectively.

Greek symbols

 δ_h equivalent stagnant film thickness for heat transfer

 ε expansion parameter, $1/Sc_p$

 ϕ dimensionless particle concentration, N/N_e

 η similarity variable, $y(u_c/2vx)^{1/2}$

 κ thermophoresis parameter, $-V_{\rm T}(T_{\rm s}-T_{\rm e})/\nu(\partial T/\partial y)$

v kinematic viscosity

 ψ stream function.

Subscripts

e free stream

h heat transfer

o outer solution

p particle

s surface.

Superscripts

C convection

D Brownian diffusion

T thermophoresis

differentiation with respect to η

* limit of zero mass transfer rate.

1. INTRODUCTION

THERE are numerous technological and environmental problems which involve deposition of aerosol particles from a condensing vapor—gas mixture. Of current concern is

deposition of radioactive aerosol particles inside a nuclear reactor containment following a hypothetical accident, which plays a critical role in reducing the amount of radioactivity that might be predicted to subsequently escape to the atmosphere. Deposition may occur on the walls of the pressure vessel, in pipes, or in bubbles rising in the pressure suppression pool. Mechanisms of deposition include Brownian diffusion, thermophoresis, diffusiophoresis, convection, inertial and sedimentation. Current engineering practice, e.g. computer codes such as HAARM-3 [1], PARDESIKO [2] and SUPRA [3], etc. is to calculate the deposition rates separately, and then to simply add them to obtain the total deposition rate. The purpose of this note is to examine the validity of such engineering calculation procedures.

The major situation of interest for nuclear reaction safety is deposition of particles from a steam-condensable gas mixture, where the gas might be air, hydrogen or a mixture of both. The flow may be forced or buoyancy driven; past a vertical or horizontal surface, laminar or turbulent, or could be a vortex flow inside a bubble. For all particle sizes the convective deposition associated with steam condensation plays an important role. For small particles, $d_{\rm p} \lesssim 0.1~\mu{\rm m}$, the diffusive mechanisms, i.e. Brownian diffusion, diffusiophoresis and thermophoresis can be important. For large particles, $d_{\rm p} \gtrsim 1.0~\mu{\rm m}$, inertial deposition and sedimentation can be important. In this note we consider only the small particles and study the coupling of convective and diffusive mechanisms of particle deposition.

The analysis of coupled deposition mechanisms has received some attention in the aerosol science and technology literature. Most of the published work deals with the coupling of Brownian diffusion and sedimentation, which is of limited interest in the current context. There has been some work on coupled thermophoresis and Brownian diffusion [4-6]. The most pertinent study is that of Hales et al. [7], who analyzed coupled convective and diffusive deposition of small aerosol particles in the laminar boundary layer associated with film condensation of steam from a stationary steam-air mixture on a vertical wall. The results, although correct and useful, do not clearly display the interactions between the various deposition mechanisms. We therefore chose to solve a simpler model problem in which transport and thermodynamic properties are taken to be constant. But in order to assume constant properties it is also necessary to ignore diffusiophoresis, since this phenomenon is related to the difference between the mass average and molar average velocities, which can only be calculated in a variable property analysis. The results of the analysis do, however, clearly display the interactions of the convective, Brownian diffusive and thermophoretic mechanisms of deposition, and allow an evaluation of approximations currently used in engineering practice.

Technical Notes 1111

2. ANALYSIS

The flow considered is the laminar forced convection air boundary layer on a flat plate. The plate is imagined to be porous and there may be suction or blowing through the plate. The plate is maintained at a temperature T_s , different to the free stream air temperature T_c . Constant properties are assumed. The particles are small enough for inertial effects to be ignored, and their concentration is too low for coagulation to occur at an appreciable rate. The governing partial differential equations admit a similarity solution and methods for obtaining the dimensionless stream function $f(\eta)$ and dimensionless temperature $g(\eta)$ are straightforward and well known. The particle conservation equation is less familiar, and may be written as

$$u\frac{\partial N}{\partial x} + v\frac{\partial N}{\partial y} = D\frac{\partial^2 N}{\partial y^2} + \frac{\partial}{\partial y}(V_T N), \tag{1}$$

where the preferred expression for the thermophoretic velocity V_T is that given by Talbot *et al.* [8]

$$V_{\rm T} = \frac{2C_{\rm s}v\left(\frac{k_{\rm tr}}{k_{\rm p}} + 2C_{\rm t}Kn\right)\left[1 + Kn(C_1 + C_2\,e^{-C_3/Kn})\right]\left(\frac{1}{T}\frac{\partial T}{\partial y}\right)}{(1 + 6C_{\rm m}Kn)\left(1 + 2\frac{k_{\rm tr}}{k_{\rm p}} + 4C_{\rm t}Kn\right)},$$
(2)

and the boundary conditions are

$$y = 0$$
: $N = 0$ (totally absorbing wall);
 $y \to \infty, x \le 0$: $N = N_c$. (3)

The self-similar form of equation (1) in terms of the dimensionless particle concentration ϕ is

$$\phi'' + Sc_{p}(f - \kappa g')\phi' - (Sc_{p} \kappa g'')\phi = 0, \tag{4}$$

with boundary conditions

$$\eta = 0, \quad \phi = 0; \quad \eta \to 1, \quad \phi = 1,$$

and

$$\kappa = \frac{2C_{\rm s} \left(\frac{k_{\rm tr}}{k_{\rm p}} + 2C_{\rm t} K n\right) [1 + K n (C_1 + C_2 e^{-C_3/K n})] (T_{\rm s} - T_{\rm e})}{T (1 + 6C_{\rm m} K n) \left(1 + 2\frac{k_{\rm tr}}{k_{\rm p}} + 4C_{\rm t} K n\right)}.$$

The particle size range of interest is spanned by a range of particle Schmidt numbers from 10^3 to 10^6 . For T=300 K and $T_{\rm s}-T_{\rm e}=3$, 30, and 300 K, the corresponding values of the thermophoresis parameter κ are approximately 0.01, 0.1, and 1, respectively.

3. SOLUTIONS

Solutions for f and g for various values of the Prandtl number and the blowing parameter $f(0) = -2^{1/2} Re_x^{1/2} (v_y/u_c)$ are of course available: however, in order to solve equation (4) detailed profiles are required, so solutions were obtained by formal integration and iteration for a Prandtl number of 0.7 and a range of values for f(0). To solve the particle equation, equation (4), it was first divided by Sc_p and with $\varepsilon = 1/Sc_p$ to obtain

$$\varepsilon \phi'' + (f - \kappa g')\phi' + (-\kappa g'')\phi = 0. \tag{7}$$

Defining

$$a(\eta) = f(\eta) - \kappa g'(\eta); \quad b(\eta) = -\kappa g''(\eta),$$
 (8a,b)

there is obtained

$$\varepsilon \phi'' + a(\eta)\phi' + b(\eta)\phi = 0. \tag{9}$$

Direct solution of equation (9) is made difficult by the fact that ε

is very small $(10^{-3}-10^{-6})$. However, for the present purpose it is sufficient to obtain the outer solution, for which

$$a\phi' + b\phi = 0; \quad \eta \to \infty, \quad \phi = 1.$$
 (10)

Integration gives

$$\phi_{o}(\eta) = \exp \left[\int_{\eta}^{\infty} \frac{b(\eta)}{a(\eta)} \, \mathrm{d}\eta \right]. \tag{11}$$

The situation of primary interest is a cold wall $(T_s < T_c)$ with suction, which can be considered to be a model problem for deposition of aerosol particles from a condensing superheated vapor. Since $\kappa > 0$, $g'(\eta) \leqslant 0$ and $f(\eta) \geqslant 0$, it follows that $g''(\eta) \geqslant 0$ and $b(\eta)/a(\eta) \leqslant 0$. Thus $\phi_o(\eta)$ decreases monotonically as the wall is approached, and has a finite value at $\eta = 0$. The deposition rate is obtained from the outer solution as follows

$$J_{s} = J_{s}^{C} + J_{s}^{T},$$

$$= \lim_{y \to 0} [N(v + V_{T})],$$

$$= \lim_{y \to 0} [N_{c}\phi_{o}(v + V_{T})], \qquad (12)$$

or

$$J_{s} = N_{e}\phi_{o}(0) [v_{s} + V_{T,s}]. \tag{13}$$

Q₁₁₁

$$v_{\rm s} = -\left(\frac{u_{\rm e}v}{2x}\right)^{1/2} f(0); \quad V_{\rm T,s} = v\kappa \frac{\partial T/\partial y|_{\rm y=0}}{(T_{\rm s}-T_{\rm e})} = \kappa g'(0) \left(\frac{u_{\rm e}v}{2x}\right)^{1/2},$$

thus

$$J_{\rm s} = N_{\rm e}\phi_{\rm o}(0) \left(\frac{u_{\rm e}\nu}{2x}\right)^{1/2} [-f(0) + \kappa g'(0)]. \tag{14}$$

If a Stanton number for particle deposition is defined as $St_p = -J_s/N_c u_e$, then

$$St_p Re_x = 2^{-1/2}\phi_0(0)[f(0) - \kappa g'(0)].$$
 (15)

As mentioned in the Introduction, current engineering practice in nuclear safety work is to assume that the various mechanisms of aerosol deposition are additive. Thus for this model problem

$$J_{s} = J_{s}^{D} + J_{s}^{T} + J_{s}^{C}, (16)$$

where

$$J_{\rm s}^D \simeq -u_{\rm e} N_{\rm e} \, S t_{\rm p}^D \tag{17a}$$

$$J_s^{\rm T} \simeq N_e V_{\rm T,s} = -u_e N_e \kappa Pr St_h \text{ (stagnant film model)}, (17b)$$

$$J_s^C \simeq N_e v_s = -N_e (u_e v/2x)^{1/2} f(0).$$
 (17c)

Hence

$$St_{p} = [St_{p}^{D} + \kappa Pr St_{h} + 2^{-1/2}Re_{x}^{-1/2}f(0)].$$
 (18)

Also

$$\frac{St_{h}}{St_{h}^{*}} = \frac{g'(0)}{g'(0)^{*}}; \quad \frac{St_{p}^{D}}{St_{p}^{D*}} \simeq \frac{g'(0)}{g'(0)^{*}}, \tag{19a,b}$$

where the asterisk denotes values in the limit of zero suction, and appropriate correlations are

$$St_{\rm h}^* = 0.332 Re_x^{-1/2} Pr^{-2/3}; \quad St_{\rm p}^{D*} = 0.332 Re_x^{-1/2} Sc_{\rm p}^{-2/3}.$$

Substitution in equation (18) gives

$$St_{\rm p} Re_{\rm x}^{1/2} = 0.707 f(0) + 0.332 [Sc_{\rm p}^{-2/3} + \kappa Pr^{1/3}] [g'(0)/g'(0)^*],$$
(20)

where for Pr = 0.7, $g'(0)^* = -0.4139$, and $Pr^{1/3} = 0.888$. Table 1 shows a comparison of equations (15) and (20) for Pr = 0.7, $Sc_p = 10^3 - 10^6$; $\kappa = 0.01$, 0.1, and 1, and f(0) = 0 - 5.

Table 1. Comparison of deposition rates given by equations (15) and (20) for suction on a cold wall (simulating condensation from a vapor-noncondensable gas mixture)

ł		1
Parameter of the Parame	103	0.2981 0.8498 1.4149 2.5713 3.7485 4.9370 6.1321
(0C) uo	c _p 104	0.2955 0.8455 1.4087 2.5612 3.7342 4.9186 6.1095
$\kappa = 1.0$ Equation (20)	Scp 10 ⁵	0.2949 0.8445 1.4074 2.5590 3.7312 4.9146 6.1046
- STORTFurensideeentlineaans	106	0.2948 0.8443 1.4071 2.5586 3.7305 4.9138 6.1035
destruction of second s	Equation (15)	0.2095 0.5346 0.08619 1.5302 2.2119 2.9017 3.5966
germanifoldusekli. Binkanasaur,	103	0.03280 0.4081 0.7849 1.5413 2.3001 3.0600 3.8207
(0)(2)	Cp 104	0.03019 0.4037 0.7787 1.5312 2.2858 3.0416 3.7981
$St_{p}Re_{x}^{1/2}$ $\kappa = 0.1$ Famation (S 105	0.02963 0.4028 0.7773 1.5290 2.2828 3.0376 3.7932
egyppy - remerciands. (Makkadania	106	0.02951 0.4026 0.7771 1.5286 2.2821 3.0368 3.7921
Addingsonous property of the second s	Equation (15)	0.02773 0.3767 0.7265 1.4284 2.1323 2.8373 3.5429
s de acesta de la companya de la com	103	0.00628 0.3639 0.7219 1.4383 2.1552 2.8723 3.5896
(00)	to 104	0.00366 0.3596 0.7157 1.4282 2.1410 2.8539 3.5669
$\kappa = 0.01$	201 SC 105	0.00310 0.3587 0.7144 1.4260 2.1379 2.8499 3.5620
TTTPuzzer, u medini kanderi katikababasa	106	0.00298 0.3584 0.7141 1.4256 2.1373 2.8491 3.5610
	Equation (15)	0.00291 0.3959 0.7091 1.4157 2.1224 2.8293 3.5363
THE STATE OF THE S	(0)/	0.0 0.5 1.0 2.0 3.0 4.0 5.0

Table 2. Comparison of deposition rates given by equations (15) and (20) for blowing from a cold wall (simulating evaporation into a vapor-noncondensable gas mixture)

Equation (15) $R = 0.1$				ō					$St_pRe_x^{1/2}$							
106 105 Scp 104 103 Scp Equation Scp 104 103 Scp 104 103 Scp 104 103 Equation Scp 104 103 Equation Scp 104 103 Equation Scp 104 103 Scp 104 103 Scp 104 103 Equation 104 105 104 103 Scp 104 105 105 104 104 105 104 104 105 104 104 105 104				$\kappa = 0.01$ Equative	on (20)				$\kappa = 0.1$ Equation	м (20)				$\kappa = 1.0$ Equation	on (20)	
0.0029 0.0030 0.0031 0.0047 0.0295 0.0296 0.0302 0.0302 0.2948 0.2948 0.2949 0.2955 0.0022 0.0023 0.0024 0.0028 0.0296 0.0392 0.0398 0.2948 0.2948 0.2945 0.0001 0.0003 0.0056 0.0270 0.0288 0.0296 0.0398 0.2908 0.2906 0.2945 0.0001 0.00024 0.0242 0.0267 0.0272 0.0298 0.2068 0.2906 0.2916 0.0001 0.00027 0.0242 0.0258 0.0267 0.0291 0.2062 0.2906 0.2916 0.0001 0.00027 0.0242 0.0258 0.0267 0.0267 0.0267 0.0267 0.2842 0.2847 0.0001 0.0001 0.0027 0.0221 0.0267 0.0263 0.2029 0.2840 0.2847 0.2847 0.0002 0.0004 0.0024 0.0267 0.0267 0.0267 0.0267 0.0267 0.0267	(0)	Equation (15)			c _p (0)	103	Equation (15)	106	, S ₄	, 10 ₄	103	Equation (15)	106	, S. 10°	, for	103
0.0002 0.00024 0.00024 0.00036 0.00270 0.0288 0.0289 0.0293 0.2938 0.2939 0.2945 0.0001 0.0003 0.0004 0.0024 0.0265 0.0267 0.0272 0.0298 0.2968 0.2905 0.2906 0.2912 0.0001 0.0003 0.0004 0.0024 0.0258 0.0267 0.0298 0.2068 0.2906 0.2912 0.0001 0.0007 0.00247 0.0258 0.0267 0.0267 0.0267 0.0267 0.2067	0.000	0.0029		1	0.0037	0.0063	0.0277	0.0295	0.0296	0.0302	0.0328	0.2095	0.2948	0.2949	0.2955	0.298
0.0001 0.0003 0.0008 0.0034 0.0249 0.0265 0.0272 0.0298 0.2908 0.2905 0.2906 0.2912	0.001	0.0022			0.0030	0.0056	0.0270	0.0288	0.0289	0.0295	0.0321	0.2088	0.2938	0.2939	0.2945	0.2971
0.00001 0.00242 0.0258 0.0265 0.0201 0.2062 0.2894 0.2896 0.2901 0.0207 0.0221 0.0227 0.0253 0.2029 0.2840 0.2842 0.2847 0.0027 0.0227 0.0227 0.0229 0.2840 0.2842 0.2847 0.0029 0.1830 0.2516 0.2517 0.2847 0.1764 0.2517 0.2523 0.1764 0.2410 0.2415 0.1871 0.1876 0.0003 0.0004 0.0003 0.0003 0.0004 <td>0.004</td> <td>0.0001</td> <td></td> <td></td> <td>0.0008</td> <td>0.0034</td> <td>0.0249</td> <td>0.0265</td> <td>0.0267</td> <td>0.0272</td> <td>0.0298</td> <td>0.2068</td> <td>0.2905</td> <td>0.2906</td> <td>0.2912</td> <td>0.293</td>	0.004	0.0001			0.0008	0.0034	0.0249	0.0265	0.0267	0.0272	0.0298	0.2068	0.2905	0.2906	0.2912	0.293
- - 0.0207 0.0221 0.0227 0.0253 0.2840 0.2842 0.2847 - - - 0.0021 0.0221 0.0227 0.0231 0.2516 0.2517 0.2523 - - - - 0.0004 0.0029 0.1830 0.2516 0.2517 0.2523 - - - - - 0.1764 0.2408 0.2410 0.2415 - - - - - - 0.1729 0.1871 0.1876 - - - - - - 0.0734 0.0170 0.0805 - - - - - - - 0.0734 0.0269 0.0273 - - - - - - - - - - - - - - - - 0.0003 0.0004 0.0007	0.005	;			0.0001	0.0027	0.0242	0.0258	0.0259	0.0265	0.0291	0.2062	0.2894	0.2896	0.2901	0.2927
	0.010	I]	i	0.0207	0.0221	0.0222	0.0227	0.0253	0.2029	0.2840	0.2842	0.2847	0.2873
	0.040	adamin's			1	i	1	*******	1	0.0004	0.0029	0.1830	0.2516	0.2517	0.2523	0.2547
	0.050	Milanone			Addresses	Badookak	, passesses	diame	-	Seedings	and the same of th	0.1764	0.2408	0.2410	0.2415	0.243
0.0734 0.0710 0.0801 0.0805 0.0273 0.	0.100	****			, manager of	Garage	The state of the s	decomm	4	******	1	0.1429	0.1870	0.1871	0.1876	0.189
		r 1			1	August	1	Ĭ	1	ŧ	***************************************	0.0734	0.0710	0.0801	0.0805	0.082
0,0004 0,0004 0,0007 0	0.250	distance			-		,	disease	j	antinania	1	0.0344	0.0268	0.0269	0.0273	0.029
	0.275	decases			***************************************	ą.	1	i i	***************************************	violantes	ę e	e sussession .	0.0003	0.0004	0.0007	0.002
	0.277	diamon			and the same of th	Ī	1	Į.	***	Specifies	I		1			0.000
	0.278		***************************************		-	*******	1	alian.	4	palacep	-	Andreises		nilen		*

Technical Notes 1113

Table 2 shows a similar comparison for blowing with f(0) = 0to -0.278.

4. DISCUSSION

Equation (15) can be shown to be the first term in the series obtained if an exact solution to equation (7) is sought using singular perturbation methods (for example, as was done by Walker et al. [9]). It is accurate for $Sc_p \gtrsim 10^3$, and thus can be regarded as an exact solution for the present purpose. Equation (20) is an approximate result obtained by simply adding the deposition rates for each mechanism if they are assumed to act independently, and also if it is assumed that thermophoretic deposition can be calculated using the temperature gradient of a stagnant film model, i.e. $\partial T/\partial y$ in equation (2) is approximated as $(T_s - T_e)/\delta_h$, $\delta_h = k/h_e$, to obtain equation (17b). Tables 1 and 2 show that the agreement is good only when convection dominates, e.g. f(0) = 5.0, $\kappa = 0.01$ in Table 1. However, the tables also show that when thermophoresis dominates, e.g. f(0) = 0, $\kappa = 1.0$ in Table 1, the agreement is poor. This discrepancy is due to the failure of the approximate method to recognize that Brownian diffusion does play an important role in the inner region of the concentration boundary layer, even for large Sc_p and κ : since $N \to 0$ at the wall, Brownian diffusion dominates as $y \to 0$. The approximate method in using the stagnant film model to give an average temperature gradient for the calculation of the thermophoretic velocity [equation (17b)], overestimates the rate of deposition by nearly 50% for $\kappa = 1.0$.

the condensation of superheated noncondensable gas mixtures, both κ and f(0) can be large, and Table 1 shows that the approximate equation can overestimate deposition rates by almost 100%. A situation of particular importance to boiling water nuclear reactor safety is the scrubbing of aerosol particles from nearly pure gas bubbles rising through a saturated suppression pool: in such a case there is evaporation into the bubbles and the only removal mechanism is thermophoresis: since the removal rates are then very low the situation is particularly dangerous. Table 2 shows that for low evaporation rates, 0 < -f(0)< 0.01, the approximate equation overestimates the removal rate by nearly 50%.

Equation (19a) is exact and allows an unambiguous evaluation of the coupling between thermophoresis and convection. However, choice of an appropriate 'blowing factor' for the particle Stanton number, and hence the equivalent stagnant film thickness for Brownian diffusion, is not straightforward. Possibilities which have, or may be considered, for use in industry include (1) unity, e.g. refs. [1, 3], (2) the factor appropriate for the limit $Sc_p \to \infty$, as given by Bird et al. [10], and (3) the same factor as that used for heat transfer, i.e. equation (19b), as used herein. Our choice was somewhat arbitrary, but the important conclusions of our study are not altered if an alternative choice is made.

In conclusion we suggest that the results displayed here indicate that current engineering methods of calculating deposition rates of small aerosol particles can be significantly in error, and that proper accounting for the coupling between the various deposition mechanisms is required to obtain improved results.

Acknowledgement- Computer time for the calculations was supplied by the Office of Academic Computing, University of California, Los Angeles.

REFERENCES

- 1. J. A. Gicseke, K. W. Lcc and L. D. Recd, HAARM-3 users manual, BMI-NUREG-1991 (1978).
- H. Jordan and C. Sack, PARDISEKO III: a computer code for determining the behavior of contained aerosols, KFK 2151, KFK/IARS (1975).
- 3. D. Bugby, A. F. Mills and R. L. Ritzman, Fission product retention in pressurized suppression pools, SAI Final Technical Report No. SAI-083-82R-022-LA (1982).
- 4. A. F. Mills and A. T. Wassel, Aerosol transport in a thermally driven natural convection boundary layer, Lett. Heat Mass Transfer 2, 159-168 (1975).
- 5. S. L. Goren, Thermophoresis of aerosol particles in the laminar boundary layer on a flat surface, J. Colloid Interface Sci. 61, 77-85 (1977).
- 6. G. M. Homsy, F. T. Geyling and K. L. Walker, Blasius series for thermophoresis deposition of small particles, J. Colloid Interface Sci. 83, 495-501 (1981).
- 7. J. M. Hales, L. C. Schwendiman and T. W. Horst, Aerosol transport in a naturally convected boundary layer, Int. J. Heat Mass Transfer 15, 1837–1850 (1972). L. Talbot, R. K. Cheng, R. W. Scheffer and D. R. Willis,
- Thermophoresis of particles in a heated boundary layer, J. Fluid Mech. 101, 737-758 (1980).
- K. L. Walker, G. M. Homsy and F. T. Geyling, Thermophoretic deposition of small particles in laminar tube flow, J. Colloid Interface Sci. 69, 138-147 (1979).
- 10. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, pp. 618-619. Wiley, New York (1960).

Int. J. Heat Mass Transfer. Vol. 27, No. 7, pp. 1113-1116, 1984 Printed in Great Britain

0017 - 9310 / 84 \$ 3.00 + 0.00© 1984 Pergamon Press Ltd.

HEAT TRANSFER BETWEEN HOT COMBUSTION GASES AND A COLD WALL IN NARROW CHANNELS FOR LIMIT FLAMES

JÓZEF JAROSIŃSKI

Institute of Aeronautics, 02-256 Warsaw, Al. Krakowska 110/114, Poland

(Received 17 February 1983 and in revised form 19 August 1983)

NOMENCLATURE

specific heat at constant pressure d^{c_p}

the 4/5 length of the high temperature zone

width of the narrow channel, equal to the quenching D distance for limit flames

- NuNusselt number as related to the quenching distance $D, \alpha D/\lambda_b$
- PePéclet number expressed in terms of the parameters of the hot combustion gases for limit flames, $c_{pb}\rho_b u_b D/\lambda_b$
- Pe_{L} Péclet number expressed in terms of the parameters of the fresh mixture for limit flames, $c_{pu}\rho_{u}u_{L}D/\lambda_{u}$
- Stanton number, Nu/Pe St
- Tabsolute temperature
- flow speed и
- burning velocity $u_{\rm L}$
- dimensionless coordinate normal to the flame х
- distance normal to the flame front. 2